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The leading-edge contamination (LEC) problem of an infinite swept wing is shown
here as vortex-induced instability. The governing equation for receptivity is presented
for LEC in terms of disturbance energy based on the Navier–Stokes equation. The
unperturbed shear layer given by the swept Hiemenz boundary-layer solution is two-
dimensional and an exact solution of incompressible the Navier–Stokes equation.
Thus, the LEC problem is solved numerically by solving the full two-dimensional
Navier–Stokes equation. The contamination at the attachment-line is shown by solving
a receptivity to a convecting vortex moving outside the attachment-line boundary
layer, which triggers subcritical spatio-temporal instability.

The mechanism of LEC is shown to be due essentially to a convecting counter-
clockwise rotating vortex, whereas a clockwise rotating vortex displays much weaker
receptivity. These results are consistent with experimental results for the bypass
mechanism.

The role of linear and nonlinear mechanisms in the contamination problem is
discussed as interactions between vorticity and velocity terms of the developed
receptivity equation. The computed temporal growth rates reveal pattern formation
during such instabilities. Proper orthogonal decomposition (POD) of the numerical
solution shows the structure of the leading eigenvector as the coherent eddy excited
during the bypass transition.

1. Introduction
The leading edge of a swept-back wing that is in contact with the fuselage is seen

to experience abrupt transition due to the convection of continuous turbulent puffs
along the attachment-line plane whenever the Reynolds number based on momentum
thickness (Reθ ) is greater than 100 (or a Reynolds number based on displacement
thickness, Reδ∗ = 245), as observed by Poll (1979) and Arnal (1986); whereas various
investigations based on linear and weakly nonlinear theories have shown the lowest
critical Reynolds number as Reδ∗ =535, indicating the actual transition to be a
subcritical mechanism. Hence, this problem continues to hold interest as seen by
recent publications, see e.g. Theofilis et al. (2003), Obrist & Schmid (2003a, b) and
Sengupta et al. (2004). A good introduction to leading-edge contamination (LEC)
is provided in Theofilis et al. (2003) which summarizes that ‘there exist two most
significant unresolved issues in the stability of the attachment-line boundary layer.’
The first relates to the issue of sub-critical instability and the second issue is that
of relating the instability at the attachment-line to the events downstream, in the
chordwise direction. It is natural to try to resolve the first issue and that is the
principal motivation of the present study.
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The experimentally observed value of the Reynolds number at transition by Poll
(1979) and the critical Reynolds numbers obtained from linear and nonlinear stability
analyses differ significantly. While the attachment-line boundary layer supports linear
instability waves (shown by careful laboratory experiments in Pfenninger & Bacon
1969; Poll 1979; Arnal, Coustols & Jullien 1984; Hall, Malik & Poll 1984; Poll,
Danks & Yardley 1996), they are not the cause of transition occurring at the
attachment-line as no linear or weakly non-linear theory has related the two. The
critical Reynolds number is reported as Reδ∗ = 583.1 by Hall et al. (1984) – more than
twice the experimental value – using a linear temporal stability analysis. Theofilis
(1998) also reports the same critical Reynolds number based on a linear spatial
analysis. Hall & Malik (1986) performed a weakly nonlinear analysis that showed a
marginally lower threshold critical Reynolds number, Reδ∗ = 535.

When a full incompressible Navier–Stokes equation was solved to reproduce
experimentally observed LEC, there also appears to be no consensus. Spalart
(1988)’s three-dimensional direct numerical simulation (DNS) spectral calculation
could not produce the nonlinear equilibrium solution reported by Hall & Malik
(1986), but it did produce the correct experimental transitional Reynolds number
in Poll (1979). Spalart (1988) used white noise to trigger instability for spatial
DNS, where spanwise periodicity and a buffer domain in the chordwise direction
were used. Two-dimensional DNS results, however, produced conflicting results, with
Theofilis (1998) predicting the wrong frequency of the disturbance as compared to
the experimental value of Poll et al. (1996). Joslin (1995) reported the existence of
the sub-critical two-dimensional equilibrium of Hall & Malik (1986). Subsequently,
Joslin (1996) postulated that interactions of multiple three-dimensional modes lead to
bypass transition. Joslin (1995) performed DNS without any periodicity assumption
in the spanwise direction.

Theofilis et al. (2003) and Obrist & Schmid (2003a, b) have looked at three-
dimensional mechanisms off the attachment-line plane. In Theofilis et al. (2003),
the linear instability problem is revisited, whereas in Obrist & Schmid (2003a), the
temporal stability problem is studied with estimates for the location of continuous
spectrum and bounds for validity of linear approximation. In Obrist & Schmid
(2003b), the potential of swept Hiemenz flow to support transiently growing non-
normal modes has been investigated. Also, a numerical receptivity problem is solved to
study the excitation of boundary-layer disturbances by free-stream vortices convected
by the mean flow. The authors looked for non-modal solutions and the process is
termed a bypass transition.

Theofilis et al. (2003) have noted that there exists a range of Reynolds numbers
between 245 and 535, that remain unexplained by any weakly nonlinear theory. The
authors noted that, ‘a different physical mechanism is required to fill either this
gap or that with linear theory’, the larger gap of 245 and 583. Above-mentioned
discrepancies prompted them to observe that, ‘in order for further advances to be
made in theory, new insight is necessary.’ The present investigation is undertaken
with this goal in mind. It should be noted that all the necessary ingredients for
understanding are based on existing evidences of sub-critical instability in Sengupta,
De & Sarkar (2003a, hereinafter referred to as SDS) for the Blasius boundary layer.

The mean flow field and coordinate systems for flow past a swept-back wing is
schematically shown in figure 1. According to Arnal (1986), observed transition right
at the leading edge cannot be explained by linear stability theory as ‘the leading edge is
contaminated by large turbulent structures coming from the wall at which the wing is
fixed without resorting to linear process (bypass).’ This is stated in Gaster (1965, 1967),
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Figure 1. Flow profiles and schematic of co-ordinate systems for flow past a swept back
wing. (a) Notation and coordinate system. (b) Streamwise (u) and cross-flow (w) mean velocity
profiles. (c) Attachment line flow.

who tried to control LEC by decelerating the disturbances in the attachment-line
plane. Gaster (1965) specifically noted that vortices associated with junction flow are
fed in to the attachment-line boundary layer. On the attachment-line plane itself, the
flow is essentially two-dimensional as established by Prandtl (1946), Cooke (1950)
and Crabtree, Kuchemann & Sowerby (1963). In all early experiments (including
the one by Poll 1979) the existence of attachment-line vortical structure is well
established. It is, thus, natural to investigate the sub-critical instability by looking at
the role of convecting vortical structures in explaining LEC from the solution of a
two-dimensional Navier–Stokes equation in the attachment-line plane itself. Similar
vortex-induced instability mechanism has been experimentally and theoretically
established in SDS and Lim, Sengupta & Chattopadhyay (2004) for bypass transition
of the Blasius boundary layer by a convecting vortex in the free stream.

Interaction between a convecting finite-core vortex and an underlying shear layer
is important, as it relates to an unsteady flow separation process that was studied in
Doligalski, Smith & Walker (1994) and Degani, Walker & Smith (1998). A later stage
of transition that bypasses linear instability was studied by Brinckman & Walker
(2001) in a quasi-two-dimensional framework. Basic ideas behind these studies have
been discussed in SDS and are not repeated here. It is noted, however, that such
interactions are present in (i) flow past surface-mounted obstacles; (ii) dynamic stall
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and blade vortex interaction; (iii) impulsive motion of bluff bodies; (iv) near-wall
turbulence phenomenon associated with generation of hairpins – as discussed in
Smith et al. (1991) and Robinson (1991).

A related model flow is studied in Obabko & Cassel (2002) where the convecting
vortex is placed inside the shear layer and given a constant convection speed. In
Sengupta, Lim & Chattopadhayay (2001) and SDS, coherent structures were created
inside the boundary layer by a single convecting vortex that moved far above a
steady boundary layer. In another set of studies, Peridier, Smith & Walker (1991a, b)
considered a flow where a vortex placed above a plane wall without any mean
convection caused the vortex to migrate and at the same time a thin unsteady
boundary layer developed along the wall to satisfy the no-slip condition. For infinite
strength of the vortex, impulsive start caused the unsteady boundary layer to thicken
and recirculating eddies to develop owing to self-imposed adverse pressure gradient.
Thus, the present study and those given in SDS and Sengupta et al. (2004) are
qualitatively different where the coherent eddies are formed inside a steady boundary
layer. In SDS and Lim et al. (2004), the receptivity mechanism was shown to be
a strong function of strength, core size, sign and distance of the convecting vortex
from the shear layer. In Sengupta et al. (2004), this model has been tested and
computational results reported that show that sub-critical instability is triggered in
the attachment-line boundary layer. In this paper, we discuss the mechanism of LEC
with the help of the receptivity equation developed in SDS and provide various
estimates of the ensuing spatio-temporal instability.

The schematic of the computational domain is shown in figure 2. Here, the vortex
migrates outside the steady attachment-line boundary layer. In this model, the vortex
mimics the turbulent structures created at the wing–body junction and is allowed
to migrate at a constant height (h) over the attachment-line boundary layer with
a constant speed c. The mechanism studied here is different to that in Obrist &
Schmid (2003b) for a numerical receptivity experiment. First, they were looking for
three-dimensional mechanisms and placed a pair of vortices symmetrically located on
either side of the attachment-line plane. Secondly, the vortices were directed toward
the wall, unlike the present case where the vortex moves parallel to the wall at a
constant speed. Finally, the vortices in Obrist & Schmid (2003b) were constrained
to move with the free-stream speed, while in Sengupta et al. (2004) and here, the
vortex moves at different speeds and the results identify translational speeds for
which receptivity is significant.
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The attachment-line-boundary-layer solution is an exact solution of the Navier-
Stokes equation and, as already noted, this creates a perfectly two-dimensional shear
layer in the attachment-line plane. The computational domain chosen here is such
that it can only suffer sub-critical instability. Sengupta et al. (2004) investigated
eight cases for different parameters, indicating their relative importance. Here, a
longer computational domain is used to trace the vortex-induced instability over
longer distances and the physical mechanism behind LEC is explained. The coherent
structures formed during the bypass transition are identified by a proper orthogonal
decomposition (POD) technique proposed in Kosambi (1943) and discussed in
detail in Holmes, Lumley & Berkooz (1996). A direct consequence of threading
coherent structures with the statistical technique of POD provides a low-dimensional
description of a fluid dynamical system, that is pursued here to provide a quantitative
measure of the instability during LEC following the method of snapshots due to
Sirovich (1987) and Rajaee, Karlsson & Sirovich (1994).

The paper is structured as follows. In the next section, the unperturbed flow field
is briefly described. This provides the initial condition and the equilibrium solution
whose instability is studied here. In § 3, the formulation for the receptivity problem
is re-stated. In § 4, the numerical method used in solving the receptivity problem is
briefly discussed. Results and discussion are provided in § 5. The coherent structures
arising out of bypass transition during LEC have been characterized by the POD
technique in § 6. In § 7, formation of cellular structure for the time rate at which the
energy sources and sinks change are discussed. Some concluding remarks are given
in § 8.

2. Unperturbed flow field
For the present exercise, the instability of the steady attachment-line boundary

layer forming over the leading edge of an infinite swept wing or a yawed cylinder is
studied. For this flow, Prandtl (1946) provided a simplified flow model in the vicinity
of the attachment-line. If we consider z as the direction parallel to the generator of the
body, then the assumption of infinite sweep is equivalent to neglecting all variations
in the z-direction.

Cooke (1950) considered the boundary layer over an infinite-yawed wedge at zero
angle of attack where, Ue = U∞(x/L)m and We = const.

The independent variable used is η = {(m + 1)U/2νx∗}1/2y∗ and the corresponding
dependent variables for the evaluation of the two components of velocity U and V

in the (x, y)-plane are given by ψ = (2Uνx∗/(m + 1))1/2f (η). Starred quantities are
dimensional.

To solve this problem, Cooke extended the two-dimensional Falkner–Skan wedge
solution by calculating the spanwise component of velocity in the layer separately
via w =Wg(η). The velocity profile obtained is the so-called Falkner–Skan–Cooke
profile (see Arnal 1986). If we identify the (x1, y1, z1) as the external streamline-
fixed coordinate system (as shown in figure 1a), and if U1(y) and W1(y) are velocity
components in this coordinate system, then

U1(y) = U cos θ0 + W sin θ0,

W1(y) = −U sin θ0 + W cos θ0.

Where θ0 is the angle between the external streamline and the normal to the leading
edge. Along the attachment-line, on the leading edge of an infinite swept wing the edge
velocity is given by Ue = kx∗ and We =W∞. The attachment-line is depicted for the
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flow near the leading edge of a swept wing (with a sweep angle φ) in figure 1(b). In the
external streamline-fixed coordinate system, x1 now coincides with the attachment-line
and the attachment-line profile is obtained as, U1/U1e = g and W1/U1e = 0, the details
are available in Sengupta et al. (2004).

3. Formulation of the receptivity problem
The LEC problem is modelled here as a two-dimensional flow in the attachment-

line plane excited by convecting vortices, as shown in figure 2. While in the actual
flow, these vortices will be three-dimensional and they would move at non-uniform
speed with varying height from the leading edge. A controlled scenario is studied
here to understand the physical mechanism behind the observed phenomenon. To
aid in understanding the mechanism, convecting turbulent structure is modelled as
a two-dimensional vortex. The strength, sign and the speed of propagation are the
parameters of the problem that were varied to investigate the receptivity mechanism in
Sengupta et al. (2004) for the numerical investigation. The undisturbed flow is obtained
as the solution of Falkner–Skan–Cooke equations. This is the initial condition used
for the solution of the Navier-Stokes equation given by,

∇2ψ = −ω, (3.1)

∂ω

∂t
+ V · ∇ω =

1

Re
∇2ω. (3.2)

These are written in non-dimensional form with attachment-line boundary-layer
edge velocity (U1e) as the velocity scale and the displacement thickness at the inflow
(δ∗

in) (as shown in figure 2) as the length scale. All other scales are derived from these
two and the Reynolds number (Re) in (3.2) is given by, Re = U1eδ

∗
in/ν, with ν as the

kinematic viscosity of the medium.
The present formulation is different on a few counts from that discussed in Peridier

et al. (1991a, b). First, the present problem is for a convecting vortex that induces
an instability over an existing steady boundary layer. Secondly, the equations that
are solved (given by (3.1) and (3.2)) are the full Navier-Stokes equation in Eulerian
description using ψ and ω as dependent variable. Thus, the accuracy of the solution
with respect to satisfying mass conservation is ensured.

4. Numerical methods and auxiliary conditions
The details of the numerical methods used here are to be found in Sengupta et al.

(2004), and only a brief outline of the same is provided. Equations (3.1) and (3.2) are
solved in the physical (x, y)-plane, with uniform grid in the streamwise direction and
a stretched grid in the wall-normal direction.

A stabilized bi-conjugate gradient algorithm is used to solve the streamfunction
equation. The vorticity transport equation is solved by representing the diffusion
term by central differences and the convection terms by the high-accuracy compact
difference scheme described in Haras & Ta’asan (1994) and Sengupta et al. (2003a).
The scheme developed in Haras & Ta’asan (1994) was strictly for periodic problems,
that was extended for non-periodic problems in Sengupta et al. (2003a) with special
boundary stencils, as given in (4.1), (4.2), (4.4) and (4.5) below, so that the overall
scheme is globally stable. The compact scheme used here is given by the following
stencils, with subscripts indicating the node locations,

u′
1 =

1

2h
[−3u1 + 4u2 − u3], (4.1)
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Case c/U1e h/δ∗
in Γ/U1eδ

∗
in xv/δ

∗ r0/δ
∗
in xin/δ

∗
in xout /δ

∗
in Rev = Γ/ν

1 0.2 30.0 50.0 50.0 6.0 150.0 550.0 211.063
2 0.2 30.0 −30.0 50.0 6.0 150.0 350.0 126.638

Table 1. Comparison of two cases.

u′
2 =

1

h

[(
2
3
β − 1

3

)
u1 −

(
8
3
β + 1

2

)
u2 + (4β + 1)u3 −

(
8
3
β + 1

6

)
u4 + 2

3
β u5

]
, (4.2)

αu′
l−1 + u′

l + αu′
l+1 =

b

4h
(ul+2 − ul−2) +

a

2h
(ul+1 − ul+1) for 3 � l � N − 2, (4.3)

u′
N−1 =

1

h

[
−

(
2
3
β − 1

3

)
uN +

(
8
3
β + 1

2

)
uN−1

− (4β + 1)uN−2 +
(

8
3
β + 1

6

)
uN−3 − 2

3
βuN−4

]
, (4.4)

u′
N =

1

2h
[3uN − 4uN−1 + uN−2], (4.5)

where primes in these equations indicate a first derivative evaluated at the nodes.
Here, α = 0.3793894912, a = 1.57557379 and b = 0.1832051925 are used for the interior
point stencil given by (4.3). For the near boundary points, β = 0.06 for l = 2 in (4.2)
and β = 0.11 for l =N – 1 in (4.4) are used. The interior stencil is an optimal one for
periodic problems and the spectral resolution of the interior scheme is very high in
comparison to other compact schemes. To control aliasing while retaining numerical
stability, an explicit fourth-order dissipation term is added at every point. This has
been discussed in Sengupta et al. (2004).

For the convected potential vortex outside the shear layer, we can calculate the
induced velocity field at the inflow and the top of computational domain analytically.
The streamfunction due to a single convected irrotational vortex of strength, Γ , of
core radius r0 is given by,

ψ = −(U1e − c)

[
(y − h)r2

0

x2 + (y − h)2
+

(y + h)r2
0

x2 + (y + h)2

]
+

Γ

4π
ln

x2 + (y + h)2

x2 + (y − h)2
, (4.6)

where x = x − ct, with c as the convection speed of the vortex. The height of the
vortex over the boundary is given by h. This expression is used to calculate the
time-dependent boundary conditions for solving (3.1) and (3.2).

Navier–Stokes equations have been solved using a (501 × 101) grid with 501 points
in the streamwise direction distributed uniformly for case 1, given in table 1. In the
wall-normal direction, the grid points are non-uniformly distributed up to ymax = 16δ∗

in

with the wall resolution given by 1.8 × 10−3δ∗
in. The points are distributed in an

arithmetic progression in this direction, as it is known to produce grid-independent
accurate results. The rationale for the choice of grid and numerical methods is
discussed in Sengupta et al. (2004). The outflow boundary condition used here is
given by ∂ω/∂x =0, which allows the disturbance to pass the domain without any
reflections.
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5. Results and discussion
The unperturbed flow field is obtained using a uniform grid with 1800 points, so

that the mean flow is calculated with adequate accuracy, up to a maximum non-
dimensional similarity coordinate ηmax = 16. This solution is interpolated using cubic
splines at the 101 nodes used for solving (3.1) and (3.2). As the physical coordinate
and the similarity variable are related by, η =

√
((m + 1)U1e/2νx∗) y∗, the boundary-

layer displacement thickness is obtained from δ∗(x) =
∫ ∞

0
(1 − g) dy∗ =

√
(νx∗/U1e)∫ ∞

0
(1 − g) dη.

For the attachment-line boundary layer, the quantity δ =
∫ ∞

0
(1 − g) dη is obtained

from the similarity solution as 1.027286. As the displacement thickness (δ∗
in) at the

inflow is taken as the length scale for non-dimensionalization, then y = y∗/δ∗
in = η(x∗

in)/δ

and x = x/δ∗
in =

√
(U1e/νx∗

in) x∗/δ. Thus, the displacement thickness at the inflow is

obtained as δ∗
in = δ2xin ν/Ue; and the corresponding Reynolds number is given by

Reδ∗ = U1eδ
∗
in/ν = δ2xin.

For the chosen similarity profile, δ is fixed. Hence, by fixing xin we fix the Reynolds
number at the inflow. This is the Reynolds number that appears in (3.2). In the present
exercise, two sub-critical excitation cases have been considered whose parameters are
given in table 1. In Lim et al. (2004) it was seen that for a Blasius boundary layer
the counterclockwise rotating (positive) vortex caused bypass transition ahead of
the vortex, while the clockwise rotating (negative) vortex creates a moving bubble(s)
behind the vortex at the onset. The two cases in table 1 are chosen to investigate
whether similar differences exist when the attachment-line shear layer is excited by
vortices of opposite signs.

In table 1, the second column indicates the speed of convection of the vortex,
as shown in figure 2. The third column provides the non-dimensional height of the
vortex from the leading edge of the wing. The non-dimensional strength of the vortex
is given in the fourth column. xv is the initial streamwise location of the vortex and
r0 is the core size of convecting vortex. The inflow and outflow of the computational
domain are indicated by xin and xout , respectively. In the last column, the strength of
the vortex is defined via a Reynolds number given by, Rev = Γ/ν. In Sengupta et al.
(2004), numerical results were reported for a very wide range of Rev investigating
various sub- and super-critical excitation cases. For the two cases discussed here, the
speed of convection, the core size, height and initial location of the vortex are kept
identical. The sign of the vortex is opposite in case 2 and with a lower vortex strength.

5.1. Bypass transition

The first case considered here corresponds to a single potential vortex of counter-
clockwise circulation convecting at a speed of 0.20U∞ over the leading edge of the
infinite swept wing at a height of 30δ∗

in. This case is investigated here in detail,
because it was shown in SDS that a counterclockwise vortex creates bypass transition
very effectively for a Blasius boundary layer. This was also seen for the numerical
simulation cases in Sengupta et al. (2004) for the LEC problem for different parameter
combinations. In comparison to those cases, here the convecting vortex is made to
move at a higher height, thereby showing the stronger receptivity of the proposed
mechanism.

In figure 3, the streamline and vorticity contours have been plotted at the indicated
time instants for case 1 of table 1. For this case, the flow becomes unstable with the
appearance of a bubble on the wall that starts a sequence of bubbles forming ahead
of it, as seen experimentally in SDS. Frames in figure 3 are for those times when the
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Figure 3. Streamline (top three panels) and vorticity (bottom three panels) contours at the
indicated times for case 1.

convective vortex streamwise location are x = 140, 250 and 450. The feature of the
excited field is that the induced instability is always ahead of the vortex. In the last
frame of figure 3 the induced disturbances are seen to leave the computational domain
even when the streamwise location of the vortex is within the computation domain.
It is noted that the first bubble makes its appearance at t =417 at a streamwise
location x = 180 where the local Reynolds number based on displacement thickness
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is Reδ∗ = 190. The first appearance of a bubble can be considered as an indicator of
flow criticality with respect to imposed external disturbance.

As the phenomenon is nonlinear, it is not possible to ascribe any fixed critical
Reynolds number. For the same reason, it is not apparent how we define a transitional
Reynolds number. The critical value of the Reynolds number given in Poll (1979)
refers to the threshold limit of the transitional Reynolds number for the attachment-
line of the tested model with respect to the disturbance environment of the tunnel.
Once the first bubble forms on the wall, a succession of others follow governed by
the mechanism discussed in SDS. In Obabko & Cassel (2002), the first bubble was
introduced as an artefact of the model where a Batchelor vortex translating at a
predefined constant speed was introduced. In contrast, in SDS, the first bubble came
out as a solution of the governing equations created by the convecting vortex in the
free stream. Peridier et al. (1991a) studied the stability of the unsteady shear layer
that forms on the plane wall in the absence of mean convection. Noted eruptions
were vertical with respect to the unsteady boundary layer. The presence of steady
convection causes the eruptions to be inclined and they are also milder in SDS.

The case simulated in SDS can be viewed to model the unit process for the
effect of free-stream turbulence (FST). The fact that a distant vortex can induce a
small longitudinal adverse pressure gradient to destabilize a wall-bounded flow was
postulated first by Taylor (1936) and is discussed in SDS. In Lim et al (2004), a series
of experiments is reported to explain how the adverse pressure gradient is created
ahead (behind) of a positive (negative) vortex migrating in the free stream. Once a
single moving bubble is created, it leads to secondary instabilities whereby multiple
bubbles are formed. Appearance and convection of multiple coherent bubbles make
the behaviour of physical variables very intermittent. As attachment-line shear layer is
more stable with respect to linear mechanism, it is of greater interest to investigate the
sub-critical instability and bypass mechanism. The plotted vorticity contours help us
to understand the coupling between the free-stream disturbance source and its effect
within the shear layer. For example, at t =447, we notice weak vortical structures
simultaneously appearing inside and outside the shear layer. The mechanism of such
coupling between the free-stream source and disturbances within a shear layer is
explained in Sengupta et al. (2002), where a distinction is made between the case
where the free-stream disturbance source moves with the free stream and the case
where it moves at a speed lower than this. It is seen that the receptivity is higher
when free-stream disturbances move at slower speeds. For this reason, the present
computations show strong bypass transition as compared to that shown in Obrist &
Schmid (2003b), where the computations displayed lower (exponential) growth rates
for the introduced bubble moving at free-stream speed.

5.2. The physical mechanism of instability

As stated in SDS, the key to understanding bypass transition is to trace the evolution
of total mechanical energy associated with the flow during the instability – a proper
measure of it for incompressible flow is E = p/ρ + V 2. This is split into a mean and a
disturbance component. In SDS, the equation for disturbance energy (Ed) was shown
to be governed by the Poisson equation,

∇2Ed = 2ωm · ωd + ωd · ωd − Vm · ∇ × ωd − V d · ∇ × ωm − V d · ∇ × ωd . (5.1)

In this equation, V and ω represent velocity and vorticity fields, respectively. The
subscripts m and d refer to mean and disturbance quantities. The mean field is that
given by the solution of the Falkner–Cooke–Skan velocity profile defined in § 2. From
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the instantaneous velocity and vorticity field, we can calculate the disturbance velocity
and vorticity components. Hence, the forcing terms of (5.1) is obtained at any instant.
It is, therefore, possible to solve the above Poisson equation to find the distribution
of the disturbance energy at any time. However, it is not necessary to solve (5.1) for
finding the disturbance energy distribution in the flow field, as was shown in SDS
where the property of the Poisson equation was exploited to do so. As (5.1) governs
the disturbance energy, so the non-zero right-hand side indicates either source or sink
of disturbance energy depending on its sign. If we accept the datum of disturbance
energy as the condition prevailing in the absence of disturbances, then the growth
of disturbance would be signalled by the appearance of a negative quantity on the
right-hand side of (5.1).

From (5.1), we can separate out the linear and nonlinear contributions arising out
of how the velocity and vorticity field interact with each other and also with itself.
For example, the second and the last terms on the-right-hand side of (5.1) represent
nonlinear contributions to the disturbance energy. The self-induced effect of vorticity
field, as represented by the second term, always contributes locally in creating an
energy sink, whereever it is significant. We cannot make any general observation on
the other nonlinear term.

To have a better understanding of the flow instability for the present case, in
figure 4(a, b), different contributions arising out of different sets of terms have been
plotted in the top three frames. On the top frame, the nonlinear vorticity inter-
action dominates over the nonlinear contribution arising from the interaction between
the velocity and vorticity fields at early times. Thus, the primary instability is due
to vorticity–vorticity interaction. Later on, secondary instabilities due to velocity–
vorticity interaction becoming dominant, as shown in figures 4(a) and 4(b). In these
figures, the third frame indicates the total right-hand side of (5.1) in which the white
patches indicate the flow region where the right-hand side represents disturbance
energy sinks. Comparing these figures with vorticity contours in figure 3, we notice that
the negative contours arising out of vorticity–vorticity interaction correlate best with
the forming vortical structures at the wall. The secondary structures seen off the wall
are essentially due to the vorticity–velocity interaction terms. Similar correlation was
seen in SDS for the Blasius profile, implying a generic nature for these interactions. As
the instability grows into bypass transition, the disturbance energy sources and sinks
alternately become sites for vortices of opposite signs and their interactions give rise
to the observed eruptions. The creation of coherent structures of opposite signs starts
secondary flow from sources to sinks that are responsible for significant unsteadiness.

It is noted that the disturbance energy equation arises by taking the divergence of the
Navier–Stokes equation in the rotational form, representing the irrotational compon-
ent of the disturbance field. The rotational field of the Navier-Stokes equation as given
by the vorticity transport equation yields the Orr–Sommerfeld equation obtained by
linearization and making the parallel-flow approximation. Although Morkovin (1991)
suggested that unsteadiness during bypass transition is due to the shear noise term
in the Poisson equation for the static pressure, to our knowledge, no previous efforts
have interpreted instabilities in terms of this disturbance energy equation.

These events being highly unsteady, it is of interest to estimate the time rate of
these instabilities. The calculated time-rate contours of the source–sink terms of (5.1)
are obtained numerically and plotted in the lowermost panels of figure 4(a, b). In all
frames of figure 4, maximum and minimum values of various quantities plotted are
indicated. A negative time rate would indicate that the source strengths are increasing,
if it is in the negative contour region.
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The actual flow over a finite sweptback wing is more complicated owing to the
presence of many vortices as trigger. To understand the unit process, a single vortex
is convected at a constant height, as was also done in the experiments in Lim et al.
(2004) and Sengupta et al. (2001). Presence of multiple vortices lead to complex Biot-
Savart interactions that would cause the vortices to move with non-uniform speed.
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This will bring in additional issues of acceleration (or deceleration) effects, resulting
in vortices moving in complex trajectories.

The equation of receptivity (5.1), is based on full Navier-Stokes equation without
any simplifying assumptions. Hence, it is the most generic equation for flow instability.
Also, it is valid for both two- and three-dimensional incompressible flows. Thus,
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significant unsteadiness with large spectral bandwidth disturbances can be created
without a vortex stretching mechanism to explain small-scale features of transitional
and turbulent flows. Once the attachment-line flow becomes unstable by the vortex-
induced instability, its effect will be felt off the attachment-line, an issue addressed in
Theofilis et al. (2003) and Obrist & Schmid (2003a) under linear instability framework.

In Sengupta et al. (2004) the receptivity of LEC to different parameters is reported,
leaving out the negative vortex case. The case 2 of table 1 is one such case where
a negative vortex of lower strength (as compared to case 1) migrates over the
attachment-line and is studied next.

5.3. Effects of a convecting negative vortex

All the parameters for this case is given in table 1. It was noted experimentally in
Lim et al. (2004) that a negative vortex creates an adverse pressure gradient behind
it and hence instability begins upstream of the vortex. The streamline and vorticity
contours for this case are shown in figure 5. Instantaneous streamwise location of
the free-stream vortex is identified by an arrowhead in streamline contour plots. The
first bubble forms upstream of the convecting vortex, as seen for t = 804. However,
beyond t = 1005 the bubble created by the primary instability of the underlying shear
layer overtakes the convecting vortex. As explained in the previous section and in
Sengupta et al. (2001), there prevails a favourable pressure gradient ahead of the
vortex for a vortex of negative sign. Thus, once the bubble overtakes the free-stream
vortex, its strength and vertical size decreases. The stabilizing effect of the favourable
pressure gradient can also be seen from the vorticity contours of figure 5. Whether
the created bubbles would overtake the free-stream vortex or not depends on the
parameter combinations of table 1. For example, in Lim et al. (2004) created bubbles
for the Blasius layer always trailed behind the clockwise rotating free-stream vortex
with attendant secondary instabilities. The present case is characterized by the absence
of secondary instability.

The corresponding right-hand side of (5.1) plotted for case 2 is shown in figure 6.
Once again, at early times the primary instability arises due to vorticity–vorticity
interaction. In figure 6(a), it is seen that the velocity–vorticity interaction gives rise to
a weaker source above the shear layer, apart from the strong source at the wall. This
was seen in the vorticity contour plots of figure 5. However, as the local flow speed
is significantly high at this height, closed contours are not seen in streamline plots.
This weak vorticity source is also seen at t = 1005 in figure 6(b), with the structure
elongated in the streamwise direction. With time, this weak vortical structure elongates
further in both the up- and down-stream direction. However, the source strength at
the wall progressively decreases, thereby weakening the bubble.

6. Characterizing LEC By POD
Coherent structures created during bypass transition can be viewed as the eigen-

mode of the vorticity field obtained by POD analysis following the method of snapshot
due to Sirovich (1987) and Rajaee et al. (1994).

This method is efficient as the number of snapshots (M) used is significantly lower
than the number of grid points (N ) in the domain. For the present purpose, we have
used twenty snapshots (M =20) centred around different times, as indicated in table 2
for time intervals of 20, while performing POD in a spatial domain with (501 × 101)
points using the fluctuating vorticity data. The mean is calculated by an average over
the chosen twenty frames and the fluctuations calculated by subtracting this from the
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indicated times for case 2.

instantaneous realizations. In table 2, the eigenvalues have been catalogued for cases 1
and 2, respectively. It is seen that the first five modes carry more than 97.5 % of
the enstrophy for both the cases. The requisite number of modes carrying the same
quantum of enstrophy increases for case 1, after the bypass transition begins.

In the top panel of figure 7 enstrophy content – the summation of eigenvalues –
versus the number of eigenmodes in the summation is plotted for case 1. The dotted
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line marks 99 % of the enstrophy level and it is clear that the first seven modes account
for it after the onset of bypass transition during t =443 to 462. The first three modes
account for more than 92.5 % at all times. In figures 7(b) and 7(d) the first and second
eigenmodes are shown, respectively, for the time interval during t = 443 to 462. In
figures 7(c) and 7(e), these are shown for the time interval t = 1007 to 1026. These
modes account for most of the vorticity production and trace the evolving coherent
structures, including the view that the process originated by excitation from the free
stream, as shown by the presence of fingers that connect the free-stream mode with
the wall mode. Similar structures were also shown in Obabko & Cassel (2002) and its
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theoretical explanation provided in Sengupta et al. (2002). All lower modes display
similar spatial structures and their relative importance can be found from figure 7(a).
The detailed information of the first ten modes is given in table 2(a) for providing a
quantitative measure for the noted bypass transition.
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(a)
Time interval, t

Serial
mode 443–462 748–767 1007–1026 1501–1520 2000–2019

1 0.0621 38.7785 41.7824 19.1695 2.6302
2 0.0031 13.2259 16.4932 4.0555 0.4790
3 0.0008 3.9393 5.1122 1.2493 0.0372
4 0.0004 2.0568 2.2227 0.6120 0.0097
5 0.0003 1.0120 1.0657 0.2982 0.0038
6 0.0002 0.5872 0.5652 0.1663 0.0013
7 0.0001 0.3303 0.3021 0.0841 0.0004
8 8.37 × 10−5 0.1981 0.1723 0.0439 0.0002
9 5.13 × 10−5 0.1179 0.0921 0.0214 5.65 × 10−5

10 2.73 × 10−5 0.0699 0.0532 0.0109 2.25 × 10−5

(b)
Time interval, t

Mode
number 501–520 805–824 1005–1024 1200–1219 1407–1426

1 0.0046 0.0252 0.2122 0.1631 0.0353
2 0.0028 0.0004 0.0062 0.0098 0.0052
3 2.21 × 10−5 1 × 10−4 0.0025 0.0051 0.0006
4 3.60 × 10−6 4.97 × 10−5 0.0002 0.0005 0.0003
5 2.04 × 10−6 4.44 × 10−6 0.0002 0.0002 5.22 × 10−5

6 1.66 × 10−7 1.77 × 10−6 0.0001 0.0001 5.86 × 10−6

7 2.90 × 10−8 7.57 × 10−7 3.13 × 10−5 4.16 × 10−5 2.60 × 10−6

8 8.09 × 10−9 1.72 × 10−7 1.05 × 10−5 2.09 × 10−5 4.43 × 10−7

9 1.98 × 10−9 5.55 × 10−8 2.26 × 10−6 1.06 × 10−5 2.34 × 10−7

10 7.07 × 10−10 1.27 × 10−8 8.06 × 10−7 6.24 × 10−6 4.14 × 10−8

Table 2. Eigenvalues for cases 1 and 2.

For case 2, the excitation causes vortical structure to appear behind the vortex
owing to a primary instability. The excited disturbances are far weaker than that for
Case 1 and no secondary instabilities are seen. Corresponding cumulative enstrophy
content at different time intervals is shown in figure 8(a). In this case, only the
first mode dominates and it is shown in figures 8(b) and 8(c) for the indicated time
intervals. These snapshots show the evolution of vortical structures inside the shear
layer. Once again, we can relate this structure with convecting free-stream vortex via
the appearance of fingers. For quantitative comparison, the first ten eigenvalues are
given in table 2(b) for the indicated time intervals.

7. Pattern formation during instabilities
From the results of the previous sections, it is noted that the bypass transition

occurring during LEC is characterized by evolution of coherent vortical structures
that are shown in vorticity contour plots in figure 3 for case 1 and in figure 5 for
case 2. These structures were also seen in POD eigenmode plots of figures 7 and 8
for the two cases described in this paper. The tendency to form coherent structures
can be detected even earlier, if one were to plot the time rate of the right-hand side
of (5.1) much before the onset of instability as shown in vorticity contour plots.
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For both cases, such time rates are shown in the bottom panels of figures 4(a),
4(b), 6(a) and 6(b) at the indicated times. In figure 9(a) the contours of time rate
of formation of energy sources (negative contour values) and sinks (positive contour
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eigenmode.

values) are shown. The primary instability structure is identified as A in the panels and
is seen at t = 402. These appear as regular elongated geometrical cellular structures.
For case 1, this appears as a spike growing vertically at the primary instability site
of alternate signs. Similar cellular structures were also seen for the Blasius boundary
layer and hence these structures are generic for external flows.

In figure 9(b), formation of such cellular structures are shown for case 2 at the
indicated time frames. In this case, the evolving structures are flatter as compared to
case 1. Very weak secondary structures appear following the primary instability and
are seen at t = 1005.
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8. Concluding remarks
Here, we present a new interpretation for leading edge contamination of an infinite

swept wing as being caused by convecting vortices in the free stream. This is shown as
subcritical instability of the swept Hiemenz flow in the attachment-line plane via the
solution of the two-dimensional Navier–Stokes equation by high-accuracy compact



Subcritical instability of an infinite swept wing 169

schemes. This bypass transition is similar to that shown in SDS for the zero-pressure-
gradient boundary layer. The main aim here is to provide the physical mechanism
behind the observed spatio-temporal instability and this is made possible with the
help of the receptivity equation (5.1), that was introduced in SDS. It is established as
vortex-induced instability which is caused by a small local adverse pressure gradient
over the shear layer. The resultant unsteady separated flow suffers a further sequence
of secondary instabilities for the case of positive convecting vortex outside the shear
layer. This type of scenario was experimentally demonstrated in Sengupta et al. (2001)
and Lim et al. (2004) for subcritical instability of the Blasius boundary layer. Apart
from showing the physical mechanism, we also provide the time-growth rate of the
noted instability. It is also established that only a positive (counterclockwise) vortex
causes the bypass transition ahead of the convecting vortex. As observed for the
Blasius boundary layer, the negative (clockwise) vortex has very weak receptivity for
the attachment-line shear layer.

Furthermore, using the numerical simulation data, we perform POD analysis
following the method of snapshots due to Sirovich (1987). This analysis clearly shows
that only a few modes are responsible for the observed instability. The enstrophy
associated with the instability is presented along with the associated eigenmodes.
The presented results in this paper provide a new mechanism for LEC that can be
termed the bypass transition. This is already shown as a subcritical instability via the
experiments of Poll (1978) and Arnal (1986) and from the DNS of Spalart (1988) and
Joslin (1995). Here, the physical mechanism of the subcritical instability is established
from a controlled numerical simulation.

With the results of the present investigation, it is proposed that a three-dimensional
simulation be attempted for a physical domain including the wing–fuselage junction
along with the leading-edge portion of a sweptback wing by using a high-accuracy
DNS method.
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